References#
Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning. Volume 4. Springer, 2006.
Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.
Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
Thomas G Dietterich. Ensemble methods in machine learning. In Multiple classifier systems, 1–15. Springer, 2000.
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, and others. An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
Norman R Draper and Harry Smith. Applied regression analysis. Volume 326. John Wiley & Sons, 1998.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May 2015. doi:10.1038/nature14539.
James MacQueen and others. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, 281–297. Oakland, CA, USA, 1967.
J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
Douglas A Reynolds and others. Gaussian mixture models. Encyclopedia of biometrics, 2009.
Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and techniques with java implementations. Acm Sigmod Record, 31(1):76–77, 2002.
Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. Cambridge University Press, 2023. https://D2L.ai.