Scikit-learn models
GPSat model based on the scikit-learn Gaussian process regression module. This is a fairly lightweight model intended to be used for simpler problems. No GPU capability.
- class GPSat.models.sklearn_models.sklearnGPRModel(data=None, coords_col=None, obs_col=None, coords=None, obs=None, coords_scale=None, obs_scale=None, obs_mean=None, verbose=True, *, kernel='Matern', kernel_kwargs=None, mean_value=None, kernel_variance=1.0, likelihood_variance=None, param_bounds=None, **kwargs)
Bases:
BaseGPRModel
- get_kernel_variance()
- get_lengthscales()
- get_likelihood_variance()
- get_objective_function_value()
get the marginal log likelihood
- optimise_parameters(opt=None, **kwargs)
Method to fit data on model by optimising (hyper/variational)-parameters. Any inheriting class should override this method.
- property param_names: list
Property method that returns the names of parameters in a list. Any inheriting class should override this method.
Each parameter name should have a
get_*
andset_*
method. e.g. ifparam_names = ['A', 'B']
then methodsget_A
,set_A
,get_B
,set_B
should be defined.Additionally, one can specify a
set_*_constraints
method that imposes constraints on the parameters during training, if applicable.
- predict(coords, full_cov=False, apply_scale=True)
method to generate prediction at given coords
- set_kernel_variance(kernel_variance)
- set_kernel_variance_constraints(low, high, move_within_tol=True, tol=1e-08, scale=False)
- set_lengthscales(lengthscales)
- set_lengthscales_constraints(low, high, move_within_tol=True, tol=1e-08, scale=False)
- set_likelihood_variance(likelihood_variance)